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1. Summary

E

A general multiblock Euler solver was developed for the analysis of flow fields

over geometrically complex configurations eitherin free air or in a wind tunnel. In

this approach, the external space around a complex configuration was divided into

a number of topologically simple blocks, so that surface-fitted grids and an

efficient flow solution algorithm could be easily applied in each block. The

computational grid in each block is generated using a combination of algebraic and

elliptic methods. A grid-generation/flow-solver interface program was developed

to facilitate the establishment of block-to-block relations and the boundary

conditions for each block. The flow solver utilizes a finite-volume formulation and

an explicit time-stepping scheme to solve the Euler equations. A multiblock

version of the multigrid method was developed to accelerate the convergence of

the calculations. The generality of the method was demonstrated through the

analysis of two complex configurations at various flow conditions. Results were

compared to available test data. Two accompanying volumes, user manuals for the

preparation of multi-block grids (Vol. II) and for the Euler flow solver (Vol. III),

provide information on input data format and program execution.



2. Introduction

The increases in fuel cost over the last two decades has spurred the

development of fuel-efficient propulsive devices for transport aircraft. Studies

(Ref. 1, 2) have shown that high speed propfans have the potential of reducing the

fuel consumption of conventional subsonic transports. More recently, both fuel

efficient advanced turbofan and very-high-bypass superfan engines have been

developed for a new generation of advanced transport aircraft.

These propulsion systems offer significant reduction in specific fuel

consumption. It is essential, however, to integrate the propulsion system properly

with the airframe if the fuel-efficiency advantages are to be realized and optimized

in actual flight. NASA Langley Research Center has an on-going research

program on the installation of advanced propulsion systems on transport aircraft

with supercritical wings (Ref. 3). Complementary to that effort, the present work

is concentrated on the development of a computational fluid dynamics (CFD) tool

for studying the effects of advanced propulsion systems on airplane lift and drag

characteristics.

In developing a CFD tool for engine-airframe integration, one must address the

following issues: complex geometry; nonlinear effects associated with transonic

flows, rotational flows and flows with non-uniform total pressure and temperature

(caused by propfan or turbofan engines); and viscous effects on the configuration

surfaces. Ideally, a complex flow such as this can only be resolved with the

Navier-Stokes equations. Unfortunately, the Navier-Stokes formulation requires

very fine grids to resolve the viscous layers, which, in turn, requires large amounts

of computing resources in order to obtain useful results for the analysis of a

complex airplane configuration. An alternative is to neglect all viscous terms and

reduce the goveming equations to the inviscid, Euler equations, so that they can be

solved effectively with the available computing resources.

In this report, an Euler-based computational method for the study of engine-

airframe integration problems will be presented. Two major tasks were involved

in the development of this method; the generation of computational grids; and the
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development of an appropriate flow solver.

In the area of grid generation, extensive research can be found in the literature.

These include the unstructured grid approach (Ref. 4, 5),: and the structured grid

approach (Ref. 6, 7). The unstructured grid approach is an _ideal choice for

complex configuration analysis. However, the requirement for large central

memory and the relatively low execution efficiency, presently limits the practical

applications of the unstructured grid method (Ref. 8-11). The structured grid

approach together with a multiblock method to handle complex geometries _ef.

12-17), offers both geometry flexibility and execution efficiency for large

problems. This approach was chosen as the framework for the present study.

The basic philosophy behind the multiblock grid generation process is

discussed in Section 3. A grid generation toolkit, program BCON, was developed

to facilitate this process. BCON is documented in details in volume II (Ref. 18) of

this report.

The Euler-based flow solver was developed for general configuration analysis.

Because of the multi-block concept, this General Multi-Block Euler (GMBE)

solver is both configuration independent and grid topology independent. The

complete flow field, exterior to the configuration, is divided into a number of

topologically simple regions or blocks. Each block consists of six faces in the

computational plane. Along each face of the block, boundary conditions, together

with block-to-block relationship; are specified. Every block has similar data

structure, so that the same flow solver algorithm can be used throughout the entire
flow field.

Two new features are introduced in the present multiblock flow solver: 1)

generalized block- to-block connectivity which allows each block an arbitrary

number of neighbors, and 2) general boundary conditions to allow each :face an

arbitrary combination of boundary conditions. These new features relieve the

blocking restrictions encountered in most existing multiblock methods, where each

face of the block can only have one neighbor and one type of boundary condition.

These features result in a significant reduction in blocks and data communication

requirements. As a result, there is lower block boundary overhead and more
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effective vectorization in the flow solver. These two features can also be very

effective for simpler configurations using very few (2-10) blocks (Ref. 19).

• Computed results for two test cases are presented to demonstrate the generality

.......... of the method. The first case is a wing-mounted propfan configuration in a wind

tunnel. The second case is a generic twin-engined, NASA low-wing transport

...... configuration (Ref. 3). Results from both are compared with test data. Volume ITI

(Ref. 20) is the user manual for the Euler solver.

3. Multiblock Grid Generation

The generation of a surface-fitted grid over a geometrically complex

configuration, in a manner that is non-configuration specific, is an essential

element in the present general flow solver development. In general, a single grid

cannot provide adequate topological resolution to cover a complex shape.

Consequently, the flow field needs to be divided into a number of simple regions,

as illustrated in Figure 1, such that within each region, smooth and well distributed

grids with a desirable grid topology can be generated. Each block contains six

faces in the computational space. Some faces may have no neighbor, such as the

faces on the far-field boundary or on the configuration surface. Others may have

multiple neighbors, such as those on the interface boundaries. The configuration

surface must lie on block-faces. This is necessary for a non-configuration specific

multi-block algorithm. Along each block-face, a combination of boundary

conditions may be used. Presently, there is a restriction that the common faces of

adjoining blocks have identical grid points.

The multiblock grid generation process is divided into four steps:

1. Blocking of the Complete flow field ........

The first step in the grid generation procedure is to divide the complete flow

field into a number of topologically simpler blocks. Complex geometry, such as a

complete airplane, may require many blocks (currently, of the order of 30).
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2. Surface Grid Generation on Block Faces

In this step, the grids on each block face must be generated. If the block face is

part of a configuration surface, the grid must be interpolated in the parametric
space of the original geometry definition to ensure that the grid lies on the
configuration surface. All other block faces will be either an interblock boundaries
or the far-field boundaries or inlet or exhaust boundaries or propeller disk

boundaries. The surface grid for these faces may be generated either by an

algebraic method or by an elliptic grid generation method.

3. Volume-Grid Generation

After the surface grids of each block have been properly prepared, the EAGLE

(Ref. 9) grid generation package can be used for field-grid generation. This

package uses both algebraic/transfinite interpolation and elliptic grid-generation

methods for volume-grid generation.

4. Block-to-Block Relation and Boundary Condition Definition

The block-to-block relation file is required by the flow solver. This file

establishes the flow field communications between adjacent blocks. In addition, a

block-boundary condition file in needed by the flow solver in order to apply the

proper boundary conditions along each block face. The block-to-block relations

are established such that every common block boundary is assigned a unique

record number, together with the two dimensional grid index associated with that

boundary. The record number of its direct neighbors are also identified. This

information enables the Euler solver to access appropriate data from neighboring

blocks for the convection and dissipation flux calculations. The block-boundary

condition is assigned in patches. Each patch represents a unique boundary

•_, : . ..- condition with a given 2D index. Each block face can have any combination of the

following types of boundary conditions: 1) interface, 2) solid surface, 3) inlet, 4)

exhaust, 5) far-field 6) centerline, 7) mirror image, and 8) actuator disk. ....

BCON is used to prepare the geometry data and job deck inputs to run the

-- , EAGLE code (Ref. 6) for volume grid generation. BCON will also generate the
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block-to-block relation and block-boundary condition files for the Euler solver. In
addition, BCON can be useful for data checking to ensure that all information is

correct, before it is passed to the flow solver.

4. General Euler Solver Algorithm .....................

The Euler solver was derived from Jameson's cell-centered finite-volume

approach (Ref. 21) where the unsteadyEuler equations are solved using a multi-

stage Runge-Kutta time-integration method; see Appendix A. The main objective

of this work was to develop a flow solver that can accept any combination of grid

topologies for the analysis of complex flows over arbitrary configurations.

Jameson's solver uses a C-grid-topology which is adequate for the analysis of

wing/body flow. To achieve the objective of treating arbitrary geometries, the flow

solver must be non-configuration specific and non-grid-topology specific. This

objective required the adaptation of Jameson's flow solver to a multiblock grid. In

the multiblock version of the Euler flow solver, boundary condition surfaces are

restricted to the block faces (Sec. 3). Then the interior of every block would

contain only regular flow field grid points, such that the flow field of each block

can be solved using the same flow solver. Requirements for the adaptation of

Jameson's flow solver to multiblock grid include: development of a multiblock-

compatible version of the multigrid method; algorithm improvement for treating

irregular and singular grid points in the flow field; and implementation of boundary

conditions in the multiblock environment. A flow solver that addressing all these

,issues is necessarily demanding on computing resources. Thus efficient

management of computer memory is an important aspect of GMBE.

The multigrid strategy employed in the present study is a simple V-cycle

multigrid applied within each individual block of the flow field. Two main reasons

for using V-cycle multigrid in a block-by-block manner are: 1) to minimize data

transfer from main memory to the secondary-memory._ef._ 22) and_ 2) to

significantly reduce the programming complexity for the present multiblock solver.

However, this restricts the multigrid calculation to one block at a time. The

residual collection and the correction interpolation at the grid cell near the block

face can not be done in the same way as the single block approach. This can affect

the overall convergence. It may also cause numerical oscillations for the analysis
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of supercritical wings with rooftop-type pressure distributions (Ref. 12). A simple

way to circumvent this problem is to turn-off the multigrid calculation after the
solution converges to a certain level of accuracy. Iterative computations will then
be continued in the single grid mode until desired convergence is achieved. In

dealing with complex geometries such as the wing/body/under-wing nacelle/pylon

configuration shown in Fig. 2, it can be very time-consuming to ensure that every
block of a multiblock grid does not contain an odd number of cells in some given
direction within the computational space. An adaptive multigrid strategy has been

developed which recognizes blocks which have an odd number of grid cells in any
given direction. A block containing an odd number of grid cells, in any direction,
will be solved by single-grid calculations. Different multigrid levels in other

blocks are employed based on the local grid cell distributions. In order for the
adaptive multigrid strategy to be effective, the non-multigrid blocks should be

small in number and size; most of the flow field should be solved using multigrid.

Jameson's cell-centered finite-volume scheme (Ref. 21) in the present Euler
solver is accurate and reliable provided that the grids in the flow field are smooth

and well distributed. However, irregular and singular grids in the flow field can
affect the accuracy and the reliability. Examples are the collapsed edge in front of

the wing leading edge near the wing tip (Fig. 3a), and the fictitious comer along
the fan cowl surface (Fig. 3b). Special techniques must be applied in these regions
in order to obtain an accurate and reliable solution. There are two main concerns

here: 1) to ensure flux balance; and 2) to minimize the sensitivity of the dissipation
terms to grid irregularities such as high aspect ratio cells and fictitious comers.
The convective flux and the dissipative flux along these grid lines must be fully

conservative. Flux terms along each face of the cell are computed and used
consistently for the flux balance of the two cells adjacent to the face. Treatment of
zero volume cells near the collapsed edge is given in Appendix A. Another

.... improvement that has been added to the flow solver is the new dissipation
_- formulation based on a spectral radius scaling (refs. 23-25).-The new formulation

improves the consistency of the solution by decreasing sensitivity to the dissipation
parameters. The improvement over conventional dissipation formulations (Ref.
26) is especially pronounced on grids with a large aspect ratio or with nonsmooth

mesh distributions (Ref. 27). Further details can be found in Appendix B.
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On each face, the calculation process is dependent upon the type of boundary

condition specified. If it is an interblock boundary surface, conservation of mass,

momentum, energy, and dissipation flux are ensured across the block boundary.

The fourth-order dissipation requires two layers of data from every adjacent block

in order to formulate a flux term that is identical to the oneused in single-block

calculations.

Characteristics boundary conditions (Ref. 28) have been implemented along the

far-field boundaries. This ensures proper propagation of information in and out of

the boundaries of the flow domain. This is crucial for numerical accuracy and

stability, especially for cases, involving powered nacelles or propellers, with non-

uniform total temperature. The tangency boundary condition is implemented on

the configuration surface, where the normal momentum equation is used to

compute the surface pressure.

Propeller power loading is simulated by an actuator disk where the

distributions of total pressure, total temperature, and swirl are prescribed.

Another option for simulating propeller power effects is to prescribe the thrust,

normal force, and side force on the propeller disk and the work added to the flow

by the propeller. The flow variables downstream of the disk are related to their

upstream values through the continuity, momentum, and energy equations. The

major advantage of this method is that the effects of angle of attack, as well as the

influence of side flow, can easily be simulated through the input of normal force

and side force distributions on the propeller disk. This method is described in
more detail in References 29 and 30.

Boundary condition methods for turbofan engine inlet and exhaust are given in

Reference 31. The nacelle center line, as well as any grid line in the flow field

representing a collapsed grid plane, is treated as solid boundary with zero .face

area. Also sufficient ghost cells are employed in-_the, mirror-image boundary

conditions for producing exact symmetry solutions. Further details on boundary

condition implementations are given in Appendix C.

The efficient management of directly addressable central memory is a necessity

......... in large scale CFD simulation because central memory is a scarce resource in a
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multi-processor supercomputer. Therefore, for a general flow field simulation, it

would be very useful to adjust the memory requirement to each grid for a specific

CFD application. To facilitate this process, a pre-processor to the general

_multiblock Euler code was written to manage the central memory requirement for

the Euler calculations. Grid information is read in and processed by this pre-

processor code to ensure optimum block-storage area in the memory for storing the

flow field and geometry information of each block. This information includes the

flow solution vector, grid coordinator vector and cell-volume vector. The

information is then moved to a working memory location, in a block-by-block

manner, to allow the flow solver to update the solution. The updated solution is

then stored back in the block-storage area. The working memory is sufficiently

large to hold the data for any one block including dissipation vectors, and other

temporary arrays required for the Euler code multigrid calculations.

5. Results and Discussions of Test Cases

5.1 Case 1: Wing-Mounted Propfan in Wind Tunnel

A wing-mounted propfan configuration in a wind tunnel, Fig. 4, was analyzed at

Moo = 0.167, cx = 0.0 deg. Solid wind tunnel wall boundary conditions are

included in the calculation to account for blockage effects. The propeller power

input (in terms of total pressure, total temperature, and swirl) is prescribed on the

propeller disk for a low power setting. As the general multiblock Euler code is

neither configuration nor grid-topology specific, it allows for the selection of a grid

system that is optimum for a specific application. For this test case, a cylindrical

type of grid is used to provide good grid resolution on the propeller disk and

nacelle surface. Fig. 5 shows the configuration and several slices of the grid used

in the analysis. The grid slices in Fig. 5c and 5d show the dense grid near the solid

body boundary on the nacelle and wing, as well as near the tip of the propeller

disk. The complete flow field is divided into two zones by a cylindrical-type grid

surface. At the propeller disk station, the cross-section of this surface coincides

with the tip of the propeller disk. The inner grid zone between this surface and the

configuration surface is divided into nine blocks. The outer grid zone is also

divided into nine blocks. The field grid consists of 860,000 points.

9



The isobars on the configuration surface for the power-on case are shown in

Fig. 6. The effects of propeller power are depicted in Fig. 7 by comparing the
propeller power-on (solid line) with power-off (dashed line) results. Wing section
lift has been decreased on the downwash side due to the effects of swirl, Fig. 7(a).

This is accompanied by an increase of section lift on the upwash side, Fig. 7(b).

The computed section pressure coefficient (Cp) distributions showed excellent
agreement with test data for both the downwash, Fig. 8(a), and upwash Fig. 8(b),
locations.

5.2 Case 2: Low Wing Turbofan Transport

To further demonstrate the code's capability to handle complex geometries, a

NASA low wing transport configuration consisting of wing/body/under-wing

nacelle/pylon was analyzed. This model was tested in the NASA Langley 16-foot

Transonic Tunnel (Ref. 3) for the investigation of nacelle/pylon installation on

wing/body. Detailed information about the model can be found in Ref. 3. The

surface grid is given in Fig. 2. The entire flow field consisted of 29 blocks with a

total of 1,140,000 grid points. The geometric complexity required the use of a

composite grid system for proper resolution of the flow field around the

engine/nacelle and also near the wing. The composite grid system included an H-

type grid for the extemal flow field and a cylindrical grid for the nacelle inlet and

exhaust flows (Fig. 9). To allow for the study of engine power effects, the detailed

gridding around the nacelle was constructed with a grid plane on the inlet fan-face,

.... '........ a grid plane on the exhaust face of the primary (or core) exhaust flow and another

grid plane on the exhaust face of the fan exhaust flow. To simulate a flow-through

condition, the total pressure and total temperature at both exhaust planes were set

at freestream values. The velocity at the fan inlet face was arbitrarily set at 0.6

times the freestream velocity to account for inlet blockage. Fig. 10 shows the

....... isobars on the configuration surface for the flow-through case when M** = 0.77 and

tx = 0.5 degree. It can be seen that detailed flow resolutions inthe nacelle-pylon

region are obtained with the present multiblock Euler solver. Figure 11 compares

the computed wing surface pressures at two span stations inboard of the nacelle
with test data. The differences could have arisen because the viscous effects and

the aeroelastic effects were not accounted for in the present analysis.

10



This configuration was also analyzed with engine power-on to demonstrate the

code's capability to simulate power-on conditions. The total pressure P0
(normalized by the freestream static pressure) for the core exit was set at 1.92 and
at 1.60 for the fan exit. The inlet velocity at the fan face.was set at 0.6 times the

freestream velocity. Figure 12 compares the Cp distribution, for the engine
power-on and power-off cases, along the outboard intersection line between the

pylon and the primary cowl. The difference in the pylonsurface pressure
distributions are discernable even at this low power setting ........

Finally, the same configuration was analyzed at an off-design condition (M**=
0.8, and cx= 0.474 deg). The results are compared with test data in Fig. 13. The

discrepancy between experimental and computed shock locations are more
pronounced because of the stronger viscous effects at this higher transonic Mach
number.

6. Concluding Remarks

;/

A grid generation and block-to-block boundary condition pre-processor

(BCON) and a general multiblock Euler (GMBE) solver were developed. The

generality of the program is demonstrated through the analysis of two complex

configurations at different flow conditions. The analysis results agree well with

test data provided that the viscous effects and aeroelastic effects are not

predominant.. When used within these conditions, the code is a useful and

effective analysis tool for engine/airframe integration studies. Accompanying

volumes are user manuals for BCON (Vol. II) and GMBE (Vol. HI)
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Appendix A

Numerical Method for the Euler Solver

The basic numerical scheme follows Jameson's finite volume formulation (Ref.

26). In this formulation, the computational domain is divided into a large number

of computation cells each treated as a control volume for the flux balance of the

governing conservation laws. For the Euler equations

0wilt + Of//)x + _J0y + 3h/0z = 0 (A1)

-p

9 u

w = pv f=

pw

pu -

p+pu 2

puv

puw

h

- pv

pvu

g = p+pv 2

pvw

pvH -

- pw

9WU

9WV

p+pw 2

- pE pull pwH -

Here, the conventional notations P, u, v, w, p, E are used for density, three

components of velocity, pressure, and the total energy. The total enthalpy H is

defined as

H = E + P/P = YP/(Y -1)P + (u2 + v2 + W2)/2 (A2)

with y representing the ratio of specific heat. Equations (A1, A2) are augmented
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by the perfect gas law as the thermal equation of state, and the caloric equation of

state for the perfect gas. In the governing equations, the density and the pressure

are normalized with respect to their freestream values. The total energy and the

total enthalpy are normalized with respect to the ratio between the freestream

pressure and freestream density p**/p**, and the velocity is normalized with respect

to the square root of p**/p**.

The unsteady Euler equations are solved by the multistage Runge-Kutta time-

stepping scheme which for an n stage may be written (Ref. 23) for the time step n
to n+l as:

w (0) = wn

w (1) = w (0) _ O_1AtR (0)

(A3)

W (m-l) = W (0) _ O_a_ 1 AtR (m-2)

w n+l = w (m) = w (0) _ t_AtR (m-l)

with R (m) = C(w) (m) + D(w) (m)

Here, C(w) (m) represents convective flux terms, and D(w) (m) represents artificial

dissipation terms. The convective terms {f}, {g} and {h} from Equation (A1) are

discretized as given in Reference 26. The dissipation terms are added to control

numerical oscillations and to capture the shocks. Details on the dissipation

formulation can be found in Appendix B. Central difference approximations are

used for both convective and dissipative term calculations.

The implicit residual smoothing (IRS) method of Ref. 32 was employed to

extend the stability range of the Runge-Kutta explicit time marching scheme. IRS

also significantly enhances the smoothing characteristics of the time marching

18



scheme for use with multigrid. This version of IRS provides superior

performance, particularly for very fine grid calculations.

In addition, for flow with uniform enthalpy, enthalpy damping procedure (Ref.

26) is used to accelerate the convergence of Euler solutions. It modifies the Euler
equations by adding forcing terms proportional to the difference between the local
and free stream values of total enthalpy. The formulation of spatial discretization

ensures that constant total enthalpy condition is consistent with the steady-state
solution of the difference equations. In so doing, the steady-state solution is not

altered by these additional terms.

Many grid surfaces converged into a collapsed edge as shown in Fig. 3a.
Extending of such coinciding surfaces beyond the collapsed edge would result in
zero volume cells. These cells must be eliminated from the block grid definition
because flow physics requires that the adjacent blocks on both sides of the zero

thickness surface access information from each other directly. This was acheived
by specifying a special relationship between the adjacent blocks. The information

is given in the block-to-block relationship file that was created by BCON (Vol. 119
during the process of multiblock grid generation.
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Appendix B

Artificial Dissipation

The artificial dissipation model used here is based on the model devised by

Jameson and Baker (Ref. 21) for 3-D Euler equations. The original model was

modified for scaling in the coordinate directions as suggested by MartinaUi (Ref.

25) and Swanson and Turkel (Ref. 24). These concepts are outlined below.

A spectral radius scaling on the dissipation terms is used to minimize the

amount of artificial dissipations. The dissipation term D(w) is expressed as

D(w) = D(w)i + D(w)j + D(w)k 031)

where the indices i, j, and k denote contributions from the _, r I, and _ directions

respectively. The formulas for the contribution from k-direction are discussed

here. The corresponding formulations in the two other directions can be obtained

through appropriate permutation of the indices.

D(w)i = di+l/'2,j,k - di-1/2,j,k 032)

These dissipation terms are a blend of second and fourth order differences with

coefficients adapted to the flow.

di+lf2,j, k = Bii+l/2,j,k(E (2) - E(4)_. 2)(3¢Vq i+l,j,k - Wi,j,k) 033)

where the scaling factor Bii+l/2,j, k = _,ii+l/2,j, k is the spectral radius in the _-
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direction at face (i+1/2, j, k). Bi is first computed at cell center (i, j, k)

Bii,j,k = _'ii,j,k = (qn_.j.k + ai,j,k)(Si-1/2,j,k + Si+l/2,j,k)/2 (B4)

where ai,j, k is the speed of sound at the cell center and Si+l_,j,k is the cell face

area. Bi at the cell face (i+1/2, j, k) is then computed by averaging the two values

at the adjacent cell centers, i. e.,

Bii+i/2,j,k = (Bii,j,k + Bii+1,j,k)/2 035)

In Equation 033) E(2) and e (4) are the adaptive coefficients and the _2 is the
second difference operator in the k-direction. The coefficient e (4) controls fourth

order dissipation which provides the background dissipation in the smooth part of

the flow to suppress numerical oscillations. Near shocks it is reduced to zero. The

coefficient e (2) controls second order dissipation which is used to capture the

shocks. The term e (2) is made proportional to the normalized second difference in

the pressure

and

E (2) = K (2) max(vii,j,k, vij+l,j,k),

vii,j,k = I(pi+l,j,k - 2pi,j,k + Pi-l,j,k)/(Pi+l,j,k + 2pi,j,k + Pi-l,j,k)l,

036)

037)

E(4)= max[0, (K(4)-E(2))], 038)

where typical values of the constant K (2) and K (4) are 1/4 and 1/256, respectively.

This isotropic dissipation formulation leads to good shock capturing and is
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adequate for computational grids of moderately high aspect ratio (of the order 10).
However, for grids containing very high aspect ratio grid cells (e. g., 500), the

dissipation coefficients may become imbalanced in different coordinate directions.
In these cases, the artificial dissipation should be anisotropic in the three

coordinate directions. According to the modification developed by Martinelli (Ref.

25), the scaling factors of Equation (B4) are adjusted as follows:

Bii,j,k = (I)(ri)),,ii,j,k 039)

where

ri= (_,Ji,j,k+ _'ki,j,k)/"Aii,j,k

and

_(ri)=l+ri ct where 0<cc<l

cc = 2/3 is recommended by Martinelli.

The pressure sensor term based on the normalized second difference of pressure

in Equation 037) has some interesting characteristics. Across a shock wave, this

term will be large since a large pressure variation can lead to large second pressure

difference. In the smooth part of the flow, this term will be insignificant. For

some low speed flow calculations where the shock wave does not occur, this

pressure sensing term may become significant near the leading edge, where the

flow is undergoing rapid expansion. For this type of flow, the pressure sensor of

Equation 037) is replaced by a sensor using an entropy function f defined as .: ....

f = (p/p)'t

where
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vii,j,k = ](fi+l,j,k - 2fi,j,k + fi-l,j.k)/(fi+l,j,k + 2fi,j,k + fi-l,j,k) I (B9)

• The value of this sensor term will be small in regions of .flow where the entropy

function f (or entropy) is uniform or a slow varying function.

In the coarse grid a simplified dissipation model is used by replacing Equation

(B3) with

di+l/2,j,k = K(0) Bii+l/2,j,k (Wi+l,j,k - Wi,j,k) 0310)

where typical value of the constant K (°) is 1/128.
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Appendix C

Boundary Condition Implementations ,.

The boundary conditions discussed in this Appendix include: 1) Solid-surface

boundary condition, 2) Far-field boundary condition, 3) Nacelle-inlet boundary

condition, and 4) nacelle exhaust plane/propeller disk boundary conditions.

1). Solid-surface boundary condition

Along the configuration surface, the tangency condition is enforced by setting

q • n = 0 where _ is the velocity vector and n is the unit outward normal vector.

For the cell-centered scheme used in the present work, the pressure on the

configuration is also needed to evaluate the convective flux terms in the

momentum and energy equations. Simple extrapolation from adjacent cell centers

(see Vol. III pages 8 and 16) can be used. Optionally, to improve numerical

accuracy, a normal momentum equation that relates the normal derivative of

pressure to the streamwise and spanwise derivatives can be used along a solid

surface in a plane of constant j the relation becomes

S2jSij 3P/_i - pUiUj_(S2j)]_i = 0 (el)

with Sij = h _)_i/_)xj , the projected area of cell face-i in the xj direction, where xl

= X, X2 = y, x3 = z, and _1 = _, _2 = 11, _3 = 4, h = IOxi/_)_jl , the cell

.............. volume, and ,Ui = Sijuj ,_ the contravariant velocity component in the _i-direction.

2). Far-field boundary condition

Because the calculation is performed in a finite region, correct implementation

" of the far-field boundary condition is essential for numerical accuracy and stability.
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The characteristic boundary condition based on locally one-dimensional Euler

equations is used. Along each face of the far-field boundary cell, the velocity

component normal to the far-field boundary is computed and checked.

2(a) For a subsonic freestream condition, if it is an inflow boundary, there are

four incoming characteristics requiting the specification of four quantities: the

tangential velocity; the enthalpy; the entropy; and one Riemann variable evaluated
from upstream values. This information together with another Riemann variable
extracted from the interior flow field are used to determine all flow variables, i.e.,

qt=qt,., s=s**, H=Hoo,

qn - 2a/(7- 1) = an,, - 2ae/(g- 1), (C2)

qn + 2a/(7- 1) = %.0 + 2a00/(7- 1).

where s denotes the entropy, a denotes the sonic speed, q the velocity, subscript e

representing values extrapolated from the interior cells adjacent to the boundary,

subscript oo denoting freestream values, subscript t implying tangential, and

subscript n implying normal components.

2(b) For the subsonic outflow boundary, specification of one quantity is

required for the incoming characteristic. One Riemann variable based on

freestream values together with four extrapolated quantities are used to calculate

the flow variables, i.e.,

qt=qt¢, S=Se, H=I-Ie,

qn- 2a/0'- 1) = qn** - 2a0./(7- 1), (C3)

qn + 2a/(7- 1) = qr_ + 2ae/0'- 1).
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This approximation assumes a uniform total temperature distributions down
stream in the far-field. This assumption is incorrect for powered nacelle.

Therefore, for powered naceUes an altemative downstream far-field boundary

condition is specified. The conservative variables p, pu, pv, pw, and pE are

extrapolated from their upstream .values, and the pressure is set to the freestream

value.

2(c) For a supersonic inflow boundary, all characteristics are incoming. Hence

all variables are assigned to their freestream values.

2(d) For a supersonic outflow boundary, there are no incoming characteristics.

Hence, all flow variables are extrapolated from the interior flow solutions.

3). Nacelle-inlet boundary conditions

These boundary conditions are described in more detail in Ref. 31. The nacelle

inlet face is treated as an outflow boundary. This is possible because the interior of

the nacelle is not modeled. Three choices of boundary conditions exist:

a). Mass flux boundary condition

If the capture stream tube area of the nacelle, i.e., A** is specified, the mass

flux at the inlet face is given by

(Pqn)f = (p**Ao.q**)/Af (C4)

with Af representing inlet face area. This is equivalent to specifying an inflow
area ratio.

b). Velocity boundary condition

_ For a given captured stream tube area A,o, the mass flux boundary condition
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can be converted into a velocity boundary condition using the isentropic relation to

relate density to the local velocity, i.e.,

qn/q** = (A_./Af)[1 - (_'-l)(M**)2 {(qn/q**) 2 - 1 }/2] -1/(v-'1) (C5)

A simple Newton's iteration procedure is written to solve the above nonlinear

equation for qn. When shock waves are presented in the inlet, the accuracy of this

equation deteriorates as the shock waves get stronger. A well designed inlet for

subsonic transport, however, should not have strong shock waves in the inlet. Test

Case 2 in Section 5.2, using qn = 0.6q**, is equivalent to using an inflow area ratio

m,,./mf = 0.66.

c). Pressure boundary condition

The static pressure p along the inlet face can be prescribed. The rest of the

flow variables are extrapolated from the upstream flow field.

4). Nacelle exhaust plane/propeller disk boundary conditions

The nacelle exhaust plane as well as the downstream side of the propeller disk

can have similar boundary conditions. In either case, a subsonic inflow boundary

is assumed.

4(a) The first type of boundary condition that can be applied to both nacelle

exhaust and propeller disk prescribes the total pressure, total temperature and the

swirl on boundary. These quantities are then used to evaluate the Mach number,

static pressure and density according to the following formulae

M = [2q2/(y-1){2y(To)2/(y-1) - q2 }]1/2,

p = po/[1 + (y-1)M2/2] -q'/(Y-1) , (C6)
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p = Tp/[(T-1)(CpTo - q2/2)]

....... Cp is the specific heat at constant pressure. The subscript o refers to "total"

..... : quantities. The flow speed q is obtained by extrapolation from the latest iterative

value from downstream. The swirl distributions are then used to give the J.1,v, and

w velocity components from q.

4(b) Another type of boundary condition frequently used for propeller

simulation prescribes the distribution of the thrust per unit area (Fx), the normal

force per unit area (Fy), the side force per unit area (Fz), and the work done by the

propeller (Q) to calculate the flow variables downstream of the propeller disk.

These quantities along with the velocity extrapolated from the flow field are used

in the momentum equations to solve for p, u, v, w and p, downstream of the disk.

pUu + Sxp = plUlUl + SxPl + SF× ,

pUv + Syp = plUlVl + SyPl + SFy,

pUw + Szp = plUlWl + Szpl + SFz ,

U2 + V2 + W 2 = q2,

p = Tp/[(T-1)(CpTo_ + SQ/pU-q2/2)]

(C7)

where U denotes the contravariant velocity component in the k-direction with

subscript 1 denoting upstream conditions. Sx, Sy, and Sz are the projected areas in

- the Cartesian directions of a ceil face on the propeller disk.: S is the cell face area.--

In either type of propeller disk boundary condition method, the boundary

condition on the upstream side of the propeller disk is obtained by setting the mass

flux to be equal to the mass flux on the downstream side. Here, the subsonic

inflow assumption implies that both the upstream Mach number M1 and the
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downstream Mach number M 2 are less than unity. In practice (Ref. 30) transient

supersonic flow could sometimes appear at the upstream side of the disk during the

early cycles of the iteration process. When M1 is greater than one, no boundary
condition can be assigned along the upstream side of the disk. The flow variables
needed for the calculations are obtained from upstream extrapolation. The

resulting normal mass flux is then used as a boundary condition for the

downstream side of the disk. For a subsonic downstream flow (M2 < 1) this

implies that one boundary condition described in either type of method must be

deleted in order to have a well posed boundary-value problem. In the case of

Method 4(a), the total temperature T O is deleted, whereas in the case of Method

4(b), the work term Q is deleted. In this way, the primary influence of the

propeller (the thrust) can still be properly simulated. For test cases that are

representative of candidate installations, such transient supersonic flow no longer

exists during the latter stage of iteration process, and the proper boundary

conditions discussed in Methods 4(a) and 4(b) are reinstated. The present

propeller theory is not valid for the case where both M1 and M2 are greater than

one.

29



0
• v,,._

=s
_0

0

.<
!

0

!
©

o1,_¢

©

c_

o
0

o
ov-._

[_

,-4

elm"(

3O



_s

0
_J

0

or,--(

c_

c_

°vml(

31



0

!

0

i ©

Z _

_ rj

Z _

32



f
f f

I t
/\

\

_ ' ,")\\ ,

kl 11
.! ,d- --

IA --

I

v

J

J
J

J
J

I

i

!
!

O

r..)

O
o_

x_

0

r..)

©

o

• ,_,,,4

©

0

33



Fig. 4. Surface Grid for a Wing-Mounted Propfan
in a Wind Tunnel.
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5a. Configuration.

IIIII

5c. Grid slice in the y-z plane.

5e. Grid on nacelle symmetry plane.

i

5b. Nacelle slices.

5d. Detail in wing/nacelle region.

5f. Grid surface at propeller tip.

Fig. 5. Configuration and Grid Slices.
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Fig. 12. Turbofan Engine Power Effect.
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